Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
World J Microbiol Biotechnol ; 40(5): 162, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613584

RESUMO

Chemical pesticides and fertilizers are used in agricultural production worldwide to prevent damage from plant pathogenic microorganisms, insects, and nematodes, to minimize crop losses and to preserve crop quality. However, the use of chemical pesticides and fertilizers can severely pollute soil, water, and air, posing risks to the environment and human health. Consequently, developing new, alternative, environment-friendly microbial soil treatment interventions for plant protection and crop yield increase has become indispensable. Members of the filamentous fungal genus Trichoderma (Ascomycota, Sordariomycetes, Hypocreales) have long been known as efficient antagonists of plant pathogenic microorganisms based on various beneficial traits and abilities of these fungi. This minireview aims to discuss the advances in the field of Trichoderma-containing multicomponent microbiological inoculants based on recent experimental updates. Trichoderma strains can be combined with each other, with other fungi and/or with beneficial bacteria. The development and field performance of such inoculants will be addressed, focusing on the complementarity, synergy, and compatibility of their microbial components.


Assuntos
Inoculantes Agrícolas , Praguicidas , Trichoderma , Humanos , Fertilizantes , Solo
2.
J Environ Manage ; 358: 120895, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626487

RESUMO

Microbial inoculation plays a significant role in promoting the efficiency of biowaste conversion. This study investigates the function of Streptomyces-Bacillus Inoculants (SBI) on carbon (C) and nitrogen (N) conversion, and microbial dynamics, during cow manure (10% and 20% addition) and corn straw co-composting. Compared to inoculant-free controls, inoculant application accelerated the compost's thermophilic stage (8 vs 15 days), and significantly increased compost total N contents (+47%) and N-reductase activities (nitrate reductase: +60%; nitrite reductase: +219%). Both bacterial and fungal community succession were significantly affected by DOC, urease, and NH4+-N, while the fungal community was also significantly affected by cellulase. The contribution rate of Cupriavidus to the physicochemical factors of compost was as high as 83.40%, but by contrast there were no significantly different contributions (∼60%) among the top 20 fungal genera. Application of SBI induced significant correlations between bacteria, compost C/N ratio, and catalase enzymes, indicative of compost maturation. We recommend SBI as a promising bio-composting additive to accelerate C and N turnover and high-quality biowaste maturation. SBI boosts organic cycling by transforming biowastes into bio-fertilizers efficiently. This highlights the potential for SBI application to improve plant growth and soil quality in multiple contexts.

3.
Sci Total Environ ; 925: 171812, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508267

RESUMO

Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.


Assuntos
Inoculantes Agrícolas , Microalgas , Salvia miltiorrhiza , Rizosfera , Antioxidantes/metabolismo , Salvia miltiorrhiza/metabolismo , Carvão Vegetal/metabolismo , Solo , Cobre/toxicidade , Cobre/metabolismo
4.
Sci Total Environ ; 923: 171419, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442752

RESUMO

The incorporation of straw with decomposing inoculants into soils has been widely recommended to sustain agricultural productivity. However, comprehensive analyses assessing the effects of straw combined with decomposing inoculants on greenhouse gas (GHG) emissions, net primary production (NPP), the net ecosystem carbon budget (NECB), and the carbon footprint (CF) in farmland ecosystems are scant. Here, we carried out a 2-year field study in a wheat cropping system with six treatments: rice straw (S), a straw-decomposing Bacillus subtilis inoculant (K), a straw-decomposing Aspergillus oryzae inoculant (Q), a combination of straw and Bacillus subtilis inoculant (SK), a combination of straw and Aspergillus oryzae inoculant (SQ), and a control with no rice straw or decomposing inoculant (Control). We found that all the treatments resulted in a positive NECB ranging between 838 and 5065 kg C ha-1. Relative to the Control, the S treatment increased CO2 emissions by 16%, while considerably enhancing the NECB by 349%. This difference might be attributed to the straw C input and an increase in plant productivity (NPP, 30%). More importantly, in comparison to that in S, the NECB in SK and SQ significantly increased by 27-35% due to the positive response of NPP to the decomposing inoculants. Although the combination of straw and decomposing inoculants yielded a 3% increase in indirect GHG emissions, it also exhibited the lowest CF (0.18 kg CO2-eq kg-1 of grain). This result was attributed to the synergistic effects of straw and decomposing inoculants, which reduced direct N2O emissions and increased wheat productivity. Overall, the findings of the present study suggested that the combined amendment of straw and decomposing inoculants is an environmentally sustainable management practice in wheat cropping systems that can generate win-win scenarios through improvements in soil C stock, crop productivity, and GHG mitigation.


Assuntos
Carbono , Gases de Efeito Estufa , Pegada de Carbono , Ecossistema , Triticum , Dióxido de Carbono/análise , Óxido Nitroso/análise , Agricultura/métodos , Solo , China
5.
Materials (Basel) ; 17(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473448

RESUMO

A novel graphene-coated nanocrystalline ceramic particle, iron-based composite inoculant was developed in this study to optimize the as-cast microstructure and mechanical properties of W18Cr4V high-speed steel (HSS). The effects of the composite inoculant on the microstructure, crystal structure, and mechanical properties of HSS were analyzed using transmission electron microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The (002-) and (020) crystal planes of the Fe3C and Cr7C3 phases, respectively, were collinear at two points in the reciprocal space, indicating a coherent relationship between the Fe3C and Cr7C3 phases in the tempered modified HSS. This contributed to an improved non-uniform nucleation rate and refining of the HSS grains. The mechanical properties of the modified steel exhibited a general improvement. Specifically, the modification treatment enhanced the hardness of HSS from HRC 63.2 to 66.4 and the impact toughness by 48.3%.

6.
J Agric Food Chem ; 72(11): 5659-5670, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442360

RESUMO

Nitrogen is the most limiting factor in crop production. Legumes establish a symbiotic relationship with rhizobia and enhance nitrogen fixation. We analyzed 1,624 rhizosphere 16S rRNA gene samples and 113 rhizosphere metagenomic samples from three typical legumes and three non-legumes. The rhizosphere microbial community of the legumes had low diversity and was enriched with nitrogen-cycling bacteria (Sphingomonadaceae, Xanthobacteraceae, Rhizobiaceae, and Bacillaceae). Furthermore, the rhizosphere microbiota of legumes exhibited a high abundance of nitrogen-fixing genes, reflecting a stronger nitrogen-fixing potential, and Streptomycetaceae and Nocardioidaceae were the predominant nitrogen-fixing bacteria. We also identified helper bacteria and confirmed through metadata analysis and a pot experiment that the synthesis of riboflavin by helper bacteria is the key factor in promoting nitrogen fixation. Our study emphasizes that the construction of synthetic communities of nitrogen-fixing bacteria and helper bacteria is crucial for the development of efficient nitrogen-fixing microbial fertilizers.


Assuntos
Fabaceae , Microbiota , Fabaceae/genética , Rizosfera , Fixação de Nitrogênio , RNA Ribossômico 16S/genética , Microbiota/genética , Verduras/genética , Bactérias/genética , Nitrogênio , Microbiologia do Solo
7.
Transl Anim Sci ; 8: txae010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352623

RESUMO

This study evaluated the effects of inoculating corn silage and/or feeding a direct-fed microbial (PRO) on performance and nutrient digestibility of lactating dairy cows. At harvesting, corn silage was treated either with water (culated or not [CON]) or Lactococcus lactis and Lentilactobacillus buchneri (INC; SiloSolve FC) at 1.5 × 105 cfu/g of corn silage. Ten mini silos and one farm-scale silo bunker per treatment were prepared for the laboratory and the lactating dairy cow trial, respectively. Five mini silos per treatment were opened on days 2 or 90 post-ensiling for pH measurement, as well as chemical analysis and aerobic stability, respectively. The farm-scale silo bunkers were opened 77 d post-ensiling for the beginning of the lactating cow trial. Eighty lactating Holstein cows were assigned in a 2 × 2 factorial design to: (1) CON silage without PRO (CON-CON; n = 20), (2) CON silage with PRO at 14 g/head/d (CON-PRO; n = 20), (3) INC silage without PRO (INC-CON; n = 20), and (4) INC silage with PRO at 14 g/head/d (INC-PRO; n = 20). Concurrently with the feeding trial, eight cows per treatment were chosen for nutrient digestibility. The pH of the corn silage was not affected by the silage inoculant (P ≥ 0.29), but INC yielded greater concentration of acetic acid and longer aerobic stability (P < 0.01). Dairy cows fed INC had a lower mean total dry matter intake (DMI), milk protein content, and somatic cell counts vs. CON (P ≤ 0.02). On the other hand, milk and fat- and protein-corrected milk (FPCM) production efficiency, milk urea-N, DM, crude protein, and starch digestibility were greater for INC-fed cows (P ≤ 0.03). Feeding direct-fed microbials (DFM) improved mean body weight, milk yield, and FPCM, as well as milk protein and lactose yield (P ≤ 0.05), but reduced milk fat and protein content (P = 0.02). A silage inoculant × DFM interaction was observed for milk production efficiency, milk protein and lactose content, and somatic cell count (P ≤ 0.05). Dairy cows fed INC-CON had a greater milk production efficiency and milk lactose content (P ≤ 0.04), but INC-PRO had lower milk protein content and SCC (P ≤ 0.03). In summary, inoculating L. lactis and L. buchneri increased acetic acid content and aerobic stability of corn silage, reduced DMI, but improved milk production efficiency and nutrient digestibility of lactating Holstein dairy cows. On the other hand, feeding PRO improved milk, protein, and lactose yield. Additionally, combining the feeding of an inoculated corn silage with PRO reduced milk somatic cell count.

8.
J Sci Food Agric ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324183

RESUMO

BACKGROUND: The plant growth-promoting bacteria (PGPB) Azospirillum brasilense is widely used as an inoculant for important grass crops, providing numerous benefits to the plants. However, one limitation to develop viable commercial inoculants is the control of PGPB survival, requiring strategies that guarantee their survival during handling and field application. The application of sublethal stress appears to be a promising strategy to increase bacterial cells tolerance to adverse environmental conditions since previous stress induces the activation of physiological protection in bacterial cell. In this work, we evaluated the effects of thermal and salt stresses on the survival of inoculant containing A. brasilense Ab-V5 and Ab-V6 strains and we monitored A. brasilense viability in inoculated maize roots after stress treatment of inoculant. RESULTS: Thermal stress application (> 35 °C) in isolated cultures for both strains, as well as salt stress [sodium chloride (NaCl) concentrations > 0.3 mol L-1 ], resulted in growth rate decline. The A. brasilense enumeration in maize roots obtained by propidium monoazide quantitative polymerase chain reaction (PMA-qPCR), for inoculated maize seedlings grown in vitro for 7 days, showed that there is an increased number of viable cells after the salt stress treatment, indicating that A. brasilense Ab-V5 and Ab-V6 strains are able to adapt to salt stress (0.3 mol L-1 NaCl) growth conditions. CONCLUSION: Azospirillum brasilense Ab-V5 and Ab-V6 strains had potential for osmoadaptation and salt stress, resulting in increased cell survival after inoculation in maize plants. © 2024 Society of Chemical Industry.

9.
Bioresour Technol ; 397: 130475, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387845

RESUMO

To alleviate the inhibitory effects of salt and oil on food waste compost, the compost was inoculated with salt-tolerant and oil-degrading Bacillus safensis YM1. The YM1 inoculation could effectively improve compost maturation index. Compared with uninoculated group, the oil content and Cl- concentration in the 0.5% YM1-inoculated compost decreased significantly by 19.7% and 8.1%, respectively. The addition of the YM1 inoculant substantially altered the richness and composition of the microbial community during composting, as evidenced by the identification of 47 bacterial and 42 fungal biomarker taxa. The enrichment of some oil-degrading salt-tolerant microbes (Bacillus, Haloplasma, etc.) enhanced nutrient conversion, which is crucial for the improved maturity of the YM1 compost. This study demonstrated that YM1 could regulate both abiotic and biotic processes to improve high-salt and oily food waste composting, which may be an effective inoculant in the industrial-scale composting.


Assuntos
Bacillus , Compostagem , Eliminação de Resíduos , 60659 , Alimentos , Solo
10.
Chemosphere ; 352: 141349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307335

RESUMO

The adsorption characteristics and mechanism of Cd2+ on microbial inoculant (MI) mainly composed of Bacillus subtilis, Bacillus thuringiensis and Bacillus amyloliquefaciens, and its potential for remediation Cd polluted soils through batch adsorption and soil incubation experiments. It was found that the Freundlich isotherm model and the pseudo-second-order kinetics were more in line with the adsorption processes of Cd2+. The maximum adsorption capacity predicted by Langmuir isotherm model suggested that of MI was 57.38 mg g-1. Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) images exhibited the surface structure of MI was damaged to varying degrees after adsorption, and Cd element was distributed on the surface of MI through ion exchange. X-ray diffraction (XRD) results showed that CdCO3 was formed on the surface of MI. Moreover, the functional groups (-OH, C-H, and -NH) involved in the adsorption of Cd2+ through fourier transform infrared spectroscopy (FTIR). After applying MI to Cd-contaminated soil, it was found that soil pH, conductivity (EC) and soil organic matter (SOM) increased by 0.84 %-2.43 %, 31.6 %-241.48 %, and 8.11 %-24.1 %, respectively, when compared with the control treatments. The content of DTPA-Cd in the soils was significantly (P < 0.05) reduced by 15.48 %-29.68 % in contrast with CK, and the Cd speciation was transformed into a more stable residual fraction. The activities of urease, phosphatase and sucrose were increased by 3.5 %-45.18 %, 57.00 %-134.18 % and 52.51 %-70.52 %, respectively, compared with CK. Therefore, MI could be used as an ecofriendly and sustainable material for bioremediation of Cd-contaminated soils.


Assuntos
Inoculantes Agrícolas , Cádmio , Cádmio/análise , Adsorção , Fazendas , Cinética , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
11.
Front Microbiol ; 14: 1293302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156003

RESUMO

Microorganisms are integral components of ecosystems, exerting profound impacts on various facets of human life. The recent United Nations General Assembly (UNGA) Science Summit emphasized the critical importance of comprehending the microbial world to address global challenges, aligning with the United Nations Sustainable Development Goals (SDGs). In agriculture, microbes are pivotal contributors to food production, sustainable energy, and environmental bioremediation. However, decades of agricultural intensification have boosted crop yields at the expense of soil health and microbial diversity, jeopardizing global food security. To address this issue, a study in West Bengal, India, explored the potential of a novel multi-strain consortium of plant growth promoting (PGP) Bacillus spp. for soil bioaugmentation. These strains were sourced from the soil's native microbial flora, offering a sustainable approach. In this work, a composite inoculum of Bacillus zhangzhouensis MMAM, Bacillus cereus MMAM3), and Bacillus subtilis MMAM2 were introduced into an over-exploited agricultural soil and implications on the improvement of vegetative growth and yield related traits of Gylcine max (L) Meril. plants were evaluated, growing them as model plant, in pot trial condition. The study's findings demonstrated significant improvements in plant growth and soil microbial diversity when using the bacterial consortium in conjunction with vermicompost. Metagenomic analyses revealed increased abundance of many functional genera and metabolic pathways in consortium-inoculated soil, indicating enhanced soil biological health. This innovative bioaugmentation strategy to upgrade the over-used agricultural soil through introduction of residual PGP bacterial members as consortia, presents a promising path forward for sustainable agriculture. The rejuvenated patches of over-used land can be used by the small and marginal farmers for cultivation of resilient crops like soybean. Recognizing the significance of multi-strain PGP bacterial consortia as potential bioinoculants, such technology can bolster food security, enhance agricultural productivity, and mitigate the adverse effects of past agricultural activities.

12.
Environ Sci Pollut Res Int ; 30(57): 120915-120929, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945959

RESUMO

Currently, there is a noticeable scarcity of applications that harness composite microbial inoculants to stimulate straw decomposition, nitrogen fixation, and crop growth. This study addresses this gap by selecting and coculturing three bacterial strains to create a composite microbial inoculant named HY-1. This innovative inoculant exhibits multifunctional capabilities, including nitrogen fixation, straw decomposition, and crop growth promotion. Furthermore, we aimed to explore its impact on soil microbial communities. The results showed that the optimal preparation conditions for the compound microbial inoculant HY-1 were 28.5 ± 0.6 °C, pH = 7.34 ± 0.40, and bacteriophage ratio 1:2:1 (Microbacterium: Streptomyces fasciatus: Bacillus amyloliquefaciens). Compared to single strains, the combination exhibited higher levels of cellulose-degrading and nitrogen-fixing enzyme activity, increased the straw degradation rate by 37.91% within 180 days, and significantly promoted the growth of corn seedlings. Under the condition of straw return, the compound bio-fungicide HY-1 effectively improved the soil microbial diversity. At that time, the soil had the highest number of unique bacterial operational taxonomic units (166), and the abundance of Proteobacteria in the soil increased by 7.24%, while that of Acidobacteriota decreased by 2.27%. The biosynthetic function of the cell wall/membrane/periplasm and the metabolic function of transporting inorganic ions were significantly enhanced. In this study, we discovered that employing coculturing techniques to produce the composite microbial inoculant HY-1 and applying it in the field effectively compensates for the limitations of single-strain inoculants, which often exhibit fewer functions and less pronounced effects. This approach demonstrates significant potential for enhancing the quality of agricultural soils.


Assuntos
Inoculantes Agrícolas , Microbiota , Solo , Agricultura , Microbiologia do Solo
13.
Front Microbiol ; 14: 1253588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901805

RESUMO

Inoculants combining Lentilactobacillus buchneri and Lentilactobacillus hilgardii have been shown to improve the aerobic stability of high-moisture corn (HMC) and whole-plant corn silage, but the mode of action of this co-inoculation remains to be elucidated. This study used metatranscriptomics to evaluate the effects of inoculation with L. buchneri alone or combined with L. hilgardii on the bacterial community, gene expression, fermentation profile, and starch digestibility in HMC. High-moisture corn not inoculated (Control) or inoculated with L. buchneri NCIMB 40788 (LB) or L. buchneri NCIMB 40788 combined with L. hilgardii CNCM-I-4785 (Combo) was ensiled in mini silo bags for 30, 60, 120, and 180 days. The fermentation profile was evaluated at all time points. Metatranscriptomics was performed on samples collected on day 120. Combo had a greater alpha diversity richness index of contigs than LB and Control, and inoculation with Combo and LB modified the beta-diversity of contigs compared to Control. Out of 69 genes of interest, 20 were differentially expressed in LB compared to Control and 25 in Combo compared to Control. Of those differently expressed genes, 16 (10 of which were associated with carbohydrate metabolism and six with amino acid metabolism) were differently expressed in both LB and Combo compared to Control, and all those genes were upregulated in the inoculated silages. When we compared Combo and LB, we found seven genes expressed differently, four associated with carbohydrate metabolism and downregulated in Combo, and three associated with amino acid metabolism and upregulated in Combo. At day 120, the inoculated silages had more culturable lactic acid bacteria, higher Lactobacillus relative abundance, and lower Leuconostoc relative abundance than Control. The concentration of acetic acid remained low throughout ensiling in Control, but in LB and Combo, it increased up to day 60 and remained stable from day 60 to 180. The 1,2-propanediol was only detected in LB and Combo. Inoculation did not affect the concentration of starch, but starch digestibility was greater in Combo than in Control. Inoculation of HMC with Combo modified the gene expression and fermentation profile compared to Control and LB, improving starch digestibility compared to uninoculated HMC.

14.
Life (Basel) ; 13(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37895375

RESUMO

Although straw is an abundant and useful agricultural byproduct, it, however, exhibits hardly any decomposition and transformation. Despite the successful application of chemical and biological substrates for accelerating straw decomposition, the co-effects and mechanisms involved are still unknown. Herein, we performed a 120 day field trial to examine the co-effects of a nitrogen fertilizer (N) and a straw-decomposing microbial inoculant (SDMI) on the straw mass, nutrient release, and the straw chemical structure of composted wheat straw in the Chaohu Lake area, East China. For this purpose, four treatments were selected with straw: S (straw only), NS (N + straw), MS (SDMI + straw), and NMS (N + SDMI + straw). Our results indicated that NMS caused a higher straw decomposition rate than S, NS, and MS (p < 0.05) after 120 days of composting. The N, P, and K discharge rates in treating with NMS were higher than other the treatments at 120 days. The A/OA ratios of the straw residues were gradually increased during the composting, but the treatment of NMS and MS was lower than the CK at the latter stage. The RDA showed that the decomposition rate, nutrient release, and the chemical structure change in the straw were cumulative, while respiration was strongly correlated with lignin peroxidase, manganese peroxidase, and neutral xylanase. In conclusion, nitrogen fertilizer or straw-decomposing microbial inoculant application can improve the decomposition rate and nutrient release with oxidase activity intensified. However, the co-application of nitrogen fertilizer and a straw-decomposing microbial inoculant promoted straw decomposition and enzyme activity better than a single application and showed a lower decomposition degree, which means more potential for further decomposing after 120 days.

15.
Plants (Basel) ; 12(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896093

RESUMO

Several soil fungi significantly contribute to the enhancement of plant development by improving nutrient uptake and producing growth-promoting metabolites. In the present study, three strains of phosphate-solubilizing fungi, namely, Aspergillus chiangmaiensis SDBR-CMUI4, A. pseudopiperis SDBR-CMUI1, and A. pseudotubingensis SDBR-CMUO2, were examined for their plant-growth-promoting capabilities. The findings demonstrated that all fungi showed positive siderophore production, but only A. pseudopiperis can produce indole-3-acetic acid. All fungi were able to solubilize insoluble phosphate minerals [Ca3(PO4)2 and FePO4] by producing phosphatase enzymes and organic acids (oxalic, tartaric, and succinic acids). These three fungal species were grown at a water activity ranging from 0.837 to 0.998, pH values ranging from 4 to 9, temperatures between 4 and 40 °C, and 16-17% NaCl in order to evaluate their drought, pH, temperature, and salt tolerances, respectively. Moreover, the results indicated that A. pseudopiperis and A. pseudotubingensis were able to tolerate commercial insecticides (methomyl and propargite) at the recommended dosages for field application. The viability of each fungal strain in the inoculum was higher than 50% at 4 and 20 °C after 3 months of storage. Subsequently, all fungi were characterized as plant-growth-promoting strains by improving the root inductions of cassava (Manihot esculenta Crantz) and sugarcane (Saccharum officinarum L.) stem cuttings in greenhouse experiments. No symptoms of plant disease were observed with any of the treatments involving fungal inoculation and control. The cassava and sugarcane stem cuttings inoculated with fungal strains and supplemented with Ca3(PO4)2 exhibited significantly increased root lengths, shoot and root dry biomasses, chlorophyll concentrations, and cellular inorganic phosphate contents. Therefore, the application of these phosphate-solubilizing fungi is regarded as a new frontier in the induction of roots and the promotion of growth in plants.

16.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37813104

RESUMO

Major challenges when ensiling sugarcane tops include fermentation that results in high quantities of alcohol and decrease in nutrient digestibility due to the accumulation of fiber components. Increased efforts to apply bacteria-enzyme inoculants in silage have the potential to improve nutrient digestibility. This study aimed to evaluate the effects of ensiling sugarcane tops with bacteria-enzyme inoculants or mixed bacterial inoculants on growth performance, nutrient digestibility, and rumen microbiome in beef cattle. Chopped sugarcane tops were ensiled in plastic bags for 60 d after application of 1) no inoculant (control check, CK); 2) bacteria-enzyme inoculants containing Pediococcus acidilactici, Saccharomyces cerevisiae, cellulase, and xylanase (T1, viable colony-forming units of each bacterial strain ≥108 CFU/g; enzyme activity of each enzyme ≥200 U/g); or 3) mixed bacterial inoculants containing Lactobacillus plantarum, Bacillus subtilis, and Aspergillus oryzae (T2, viable colony-forming units of each bacterial strain ≥107 CFU/g). Silages were fed to eighteen Holstein bull calves (n = 6/treatment) weighing 163.83 ±â€…7.13 kg to determine intake in a 49-d experimental period. The results showed that beef cattle-fed T1 silage or T2 silage had a significantly higher (P < 0.05) average daily gain than those fed CK silage, but the difference in dry matter intake was not significant (P > 0.05). The apparent digestibility of crude protein (CP) and acid detergent fiber (ADF) were higher (P < 0.05) for beef cattle-fed T1 silage or T2 silage than for those fed CK silage. The rumen bacterial community of beef cattle-fed T1 silage or T2 silage had a tendency to increase (P > 0.05) abundance of Firmicutes and Rikenellaceae_RC9_gut_group than those fed CK silage. Rumen fungal communities of beef cattle-fed T1 or T2 silage had a tendency to increase (P > 0.05) abundance of Mortierellomycota and of Mortierella than those fed CK silage. Spearman's rank correlation coefficient showed that the apparent digestibility of ADF for beef cattle was positively correlated with unclassified_p_Ascomycota of the fungal genera (P < 0.05). Neocalimastigomycota of the fungal phyla was strongly positively correlated with the apparent digestibility of neutral detergent fiber (NDF) (P < 0.05). Ruminococcus was positively correlated with the apparent digestibility of CP (P < 0.05). It was concluded that both T1 and T2 improved the growth performance of beef cattle by improving the ruminal apparent digestibility of CP and ADF, and had no significant impact on major rumen microbial communities in beef cattle.


Major challenges when ensiling sugarcane tops include fermentation that results in high quantities of alcohol and decrease in nutrient digestibility due to the accumulation of fiber components. Increased efforts to apply bacteria-enzyme inoculants in silage have the potential to improve nutrient digestibility. This study aimed to evaluate the effects of ensiling sugarcane tops with bacteria-enzyme inoculants or mixed bacterial inoculants on the growth performance, nutrient digestibility, and rumen microbiome in beef cattle. Chopped sugarcane tops were ensiled in plastic bags for 60 d after application of 1) no inoculant (control check, CK); 2) bacteria-enzyme inoculants (Pediococcus acidilactici, Saccharomyces cerevisiae, cellulase, and xylanase), termed treatment T1; or 3) mixed bacterial inoculants (Lactobacillus plantarum, Bacillus subtilis, and Aspergillus oryzae), termed treatment T2. Silages were fed to 18 Holstein bull calves (n = 6/treatment) weighing 163.83 ±â€…7.13 kg to determine intake in a 49-d experimental period. It was concluded that both T1 and T2 improved the growth performance of beef cattle by improving the ruminal apparent digestibility of crude protein and acid detergent fiber, and had no significant impact on major rumen microbial communities in beef cattle.


Assuntos
Inoculantes Agrícolas , Microbiota , Saccharum , Bovinos , Animais , Masculino , Rúmen/metabolismo , Detergentes/metabolismo , Detergentes/farmacologia , Silagem/análise , Nutrientes , Bactérias/metabolismo , Saccharomyces cerevisiae , Fermentação , Digestão , Zea mays/metabolismo
17.
Trop Anim Health Prod ; 55(5): 299, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37723331

RESUMO

In this study, we evaluated the biomass yield, physico-chemical characteristics, nutrient composition, and feeding value of oat (Avena sativa) grown without irrigation ensiled with or without supplemental inoculant following different wilting durations. Oat forage at early dough stage (79 days after sowing) were harvested to assess the biomass yield, nutrient contents, and mineral composition. Oats were ensiled with or without the addition of inoculant and different wilting durations (0, 24, and 48 h) in 3 × 2 factorial arrangement. After the ensiling (120 days), the oat silages were opened, quality was measured in terms of pH, ammonia nitrogen (NH3-N), smell, structure, color, and Flieg point. Nutritional composition and feeding values were analyzed in oat silages. Oat grown without irrigation yielded 32 ton/ha fresh matter. Mean dry matter (DM), organic matter, crude protein (CP), crude fiber, crude ash, ether extract, nitrogen free extract, acid detergent fiber (ADF), neutral detergent fiber, acid detergent lignin, non-structural carbohydrates, hemicellulose, and in vitro dry matter digestibility of oat forage were 32.77%, 90.41%, 11.31%, 28.69%, 9.59%, 3.99%, 46.43%, 36.32%, 63.98%, 7.22%, 11.14%, 27.67%, and 74.81%, respectively. Addition of inoculant had no effect on the quality, nutritional composition, and feeding values of oat silages. Increasing wilting durations linearly increased the pH (P = 0.005) and decreased the smell score (P = 0.028) of ensiled oat. A linear increase was seen in the DM content of ensiled oat after increasing wilting durations (P = 0.001). Oat ensiled without wilting had greater CP content (P = 0.010 and linear P = 0.011) and lower ADF content than those ensiled after 24 or 48 h of wilting (P = 0.013 and linear P = 0.007). Silages subjected to 24 or 48 h of wilting had lower hemicellulose content (P = 0.019 and linear P = 0.012) and digestible DM (P = 0.013 and linear P = 0.007) than those without wilting. In conclusion, inoculant may not affect the quality, composition and feeding values of ensiled oat grown without irrigation whereas, wilting at different durations may negatively affect the pH, smell, CP, ADF, and feeding values of ensiled oats.


Assuntos
Avena , Detergentes , Animais , Biomassa , Silagem , Nutrientes , Grão Comestível , Nitrogênio
18.
J Fungi (Basel) ; 9(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37755001

RESUMO

Soil salinity is a limiting factor in crop productivity. Inoculating crops with microorganisms adapted to salt stress is an alternative to increasing plant salinity tolerance. Few studies have simultaneously propagated arbuscular mycorrhizal fungi (AMF) and dark septate fungi (DSF) using different sources of native inoculum from halophyte plants and evaluated their effectiveness. In alfalfa plants as trap culture, this study assessed the infectivity of 38 microbial consortia native from rhizosphere soil (19) or roots (19) from six halophyte plants, as well as their effectiveness in mitigating salinity stress. Inoculation with soil resulted in 26-56% colonization by AMF and 12-32% by DSF. Root inoculation produced 10-56% and 8-24% colonization by AMF and DSF, respectively. There was no difference in the number of spores of AMF produced with both inoculum types. The effective consortia were selected based on low Na but high P and K shoot concentrations that are variable and are relevant for plant nutrition and salt stress mitigation. This microbial consortia selection may be a novel and applicable model, which would allow the production of native microbial inoculants adapted to salinity to diminish the harmful effects of salinity stress in glycophyte plants in the context of sustainable agriculture.

19.
Microbiome ; 11(1): 214, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37770950

RESUMO

BACKGROUND: Plant-beneficial bacterial inoculants are of great interest in agriculture as they have the potential to promote plant growth and health. However, the inoculation of the rhizosphere microbiome often results in a suboptimal or transient colonization, which is due to a variety of factors that influence the fate of the inoculant. To better understand the fate of plant-beneficial inoculants in complex rhizosphere microbiomes, composed by hundreds of genotypes and multifactorial selection mechanisms, controlled studies with high-complexity soil microbiomes are needed. RESULTS: We analysed early compositional changes in a taxa-rich natural soil bacterial community under both exponential nutrient-rich and stationary nutrient-limited growth conditions (i.e. growing and stable communities, respectively) following inoculation with the plant-beneficial bacterium Pseudomonas protegens in a bulk soil or a wheat rhizosphere environment. P. protegens successfully established under all conditions tested and was more abundant in the rhizosphere of the stable community. Nutrient availability was a major factor driving microbiome composition and structure as well as the underlying assembly processes. While access to nutrients resulted in communities assembled mainly by homogeneous selection, stochastic processes dominated under the nutrient-deprived conditions. We also observed an increased rhizosphere selection effect under nutrient-limited conditions, resulting in a higher number of amplicon sequence variants (ASVs) whose relative abundance was enriched. The inoculation with P. protegens produced discrete changes, some of which involved other Pseudomonas. Direct competition between Pseudomonas strains partially failed to replicate the observed differences in the microbiome and pointed to a more complex interaction network. CONCLUSIONS: The results of this study show that nutrient availability is a major driving force of microbiome composition, structure and diversity in both the bulk soil and the wheat rhizosphere and determines the assembly processes that govern early microbiome development. The successful establishment of the inoculant was facilitated by the wheat rhizosphere and produced discrete changes among other members of the microbiome. Direct competition between Pseudomonas strains only partially explained the microbiome changes, indicating that indirect interactions or spatial distribution in the rhizosphere or soil interface may be crucial for the survival of certain bacteria. Video Abstract.


Assuntos
Solo , Triticum , Solo/química , Triticum/microbiologia , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética , Plantas , Pseudomonas/genética
20.
Materials (Basel) ; 16(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569968

RESUMO

The grain size plays a pivotal role in determining the properties of the alloy. The grain size can be significantly decreased by adding inoculants. Aiming to address the shortcomings of existing inoculants, the Al3Ti-Al2O3/Al inoculant was successfully prepared using Al-Ti master alloy and Al2O3 whiskers as raw materials. With the aid of ultrasonic energy, the Al2O3 whiskers were uniformly dispersed within the inoculants. Under the combined action of ultrasonic and titanium, the Al2O3 whiskers were broken into small particles at high temperature. To enhance the morphology of Al3Ti and achieve even particle dispersion throughout the matrix, vacuum rapid quenching treatment was applied to the inoculant. The SEM test results indicated a significant reduction in particle size after vacuum rapid quenching. The Al3Ti-Al2O3/Al inoculants exhibited excellent grain refinement effects on the weldable Al-Cu-Mn alloy. Crystallographic calculations and HRTEM analysis revealed that Al2O3 and Al have orientation relationships, indicating their potential as effective heterogeneous nucleation sites. The mechanical properties of the Al-Cu-Mn alloy were obviously improved after the Al3Ti-Al2O3/Al inoculant was added.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...